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In a quasi-static formulation we consider the longitudinal elastic-plastic impact of a 
body onto a semi-infinite rod. An elastic solution of this problem is well known, namely, 
that proposed in [i] by Sears; however, his solution is confirmed by experimental data only 
for small impact speeds. With an increase of impact speed plastic deformation appears in 
the region of contact which has a noticeable effect on the basic impact parameters: the 
contact interaction force P, the local deformation a, and the time of contact. 

In a precise formation the problem concerning nonelastic impact leads to a dynamic 
elastic-plastic problem which, by virtue of its complexity, may be solved either numerically 
or approximately. Assuming that the speed of impact is much less than the speed of sound in 
the bodies, we can neglect inertias of local deformation and solve the problem in a quasi- 
static formulation, i.e., we can assume that in the dynamic problem the function ~(P) stays 
the same as in the static problem. It is assumed in the present paper that total displace- 
ments of the rod can be considered as elastic, and that deformations in the region of con- 
tact of the body and the rod can be treated as elastic-plastic. We employ an earlier-developed 
model for the local deformation ~(P) of axially symmetric elastic-plastic bodies which differs 
from previous models in that in it the outflow of material from the contact zone is taken into 
account and plastic deformations are accounted for from the instant that the mean stresses in 
the contact zone reach the Brinell stage [2]. 

We locate the coordinate origin at the point of initial contact of the body and the rod. 
The equation for longitudinal oscillations of the rod has the form 

6~u~lOft ~ = a~Ofu~lOx ~, a~ = (E~19~I ~. ( i )  

Here u I is the longitudinal displacement of points of the rod; E z is the Youngts modulus; 
Pl is the density of the material of the rod. 

A displacement of the body is described by the equation 

mO2u2!Ot ~ =- -P ( t ) ,  

where u 2 is the displacement of the body; m is its mass; P(t) is the force of interaction 
of the body and the rod at contact. Initial conditions are the following: 

u~(x, O) = O, u2@, O) = O, O u ~ ,  O)tOt = O, Ou W ,  O)lOt = 

(v 0 is the initial speed of impact). Local deformation has the form 

= u~(O, t ) -  ~(o ,  t). (2 )  

At the end of the rod we have the condition 

E~F~Ou~(O, t)lax = - -P( t )  ( 3 )  

(F I is the area of a rod nross section). 

We apply a Laplace transform to Eqs. (i) and (3): 

2 2 02UllOx 2 = x Ullal; (4) 

sU~(O, ~ = aaQf(ExF~), (5) 

o 0 

(s i s  the Laplace t ransform parameter) .  I t  fo l lows  from r e l a t i o n s  (4) and (5) and the con- 
ditian UI(~, s) = 0 that 
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U 1 = C 1 exp (--sx[ax), C1 -= Qaa(E1F:)  -I .  

Transforming relation (6), we obtain 

Ou~(O, t)/Ot -= a lP( t ) / (E1FO.  

Thus the initial problem is reduced to the Cauchy problem 

mO2u2(O, t)/Ot 2 = - - P ( t ) ,  Ou~(O, t)/Ot = alP(t) /(E~Fa),  ( 7 )  

ua(O, O) = O, u2(O, O) = O, Ou~(O, O)[Ot = O, Ou2(O, O)/Ot = re. 

Here the condition (2) must be satisfied. In the Sears theory the function ~(P) is elastic, 
i.e., 

d = h P  ~/~, h = R -~/3 (3/(4E)) ~/~, R -1 = / ~ F  ~ + R?  1, (8 )  

Here R= and R 1 are the radii of curvature of the body and of the end of the rod at their 
point of contact; v I and v2 are Poisson coefficients for the material of the rod and body. 

In proceeding we use the model from [2] for the local deformation, writing it in the 
dimensionless form 

213 P ,  P ,  < 1 

> (9) a--~-- i[(~ -k~)P1,/~ + (i - -  ~ ) P . ] / 2 .  d P l d t > O  ] P .  t, 
/~ p p p a/z -a/~ 9 

where P, = p/p0; p0 and ~0 are the contact force and local deformation, starting from which 
local deformations are taken into account; Pmax is the largest force attained during the 
penetration stage; p0 = ~R~0; ~0 = R[3• • ~ ~kv; k = ~~ ~ ~5.7 in the absence of fric- 
tion between the bodies; $ characterizes flowing out of the material from under the stamp 
during the penetration process (if outflow is not taken into account, then ~ = 0; in the 
absence of friction, ~ = 0.33 for a parabolic stamp); k is the plastic constant. 

For developed plastic deformations we can obtain an approximate solution of the initial 
problem in closed form. In relation (9), when dP/dt > 0 the linear term in P will be the 
dominant term for plastic deformations, and we can then take 

a = bP,  b ---- ~ (2Rak?) -1, ~ = i -- ~. (10)  

I n  t h i s  c a s e  r e l a t i o n  (7 )  becomes  

"(z %- a~i(E~F~) -1%- a(bm)  -~ = O, a(O) = O, (z(O) --  re, 

whence it follows that 

(6) 

cz : Vo r-1 exp ( - -d t )  sin (rt), d -~ al(2bE1F1) -1, (11)  
r = [(bin) - 1 -  d211/2. 

The penetration time T is determined from the condition ~(T) = 0; hence, tan(rT) = 2[(d 2 x 
bm) -I - 1] I/2 . Since d~bm is a small quantity, we can assume that rT = ~/2, from which it 
follows that 

T = ~[Lm(8Rz~ky)  -111/2 ~max = Vo r <  exp ( - - d T )  sin (rT).  

Here  ~max i s  t h e  maximum l o c a l  d e f o r m a t i o n  c o r r e s p o n d i n g  t o  t h e  l a r g e s t  p e n e t r a t i o n  f o r c e  
Pmax" S i n c e  s i n ( r T )  § 1, i t  f o l l o w s  f rom r e l a t i o n s  (11)  t h a t  ~max h a s  t h e  f o r m  

~max = Vo r-1 exp [--~(4F1)-l(mRzxo~ ]. 

From r e l a t i o n s  (10)  we h a v e  Pmax = C~nax/b" 

F i n a l l y ,  we f i n d  t h a t  t h e  b a s i c  i m p a c t  p a r a m e t e r s  i n  t h i s  c a s e  a r e  g i v e n  by t h e  e x p r e s -  
s i o n s  

~max = vo(m~,) 1/2 (Rno~ Pmax = v0 ~-1/2 (mRnc;~ ( 1 2 )  
T = ax [3 ,m(8Rnk?)-I  ]112. 

Problem (7), with function =(P) in the form (8), (9), and also with ~(P) in the form given in 
[3], was solved numerically by the Runge-Kutta method. Here we determined the basic impact 
parameters. All the initial data for our calculations were taken to be those used in the 
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TABLE i 

m, kg I 
..7 

0,6 
0,6 t3,1 
0,6 13,1 
0,3 [ 4.86 

R,m 

0,065 
0,063 
0,063 
0,063 
0,063 
0,063 
0,063 

l Vo ,  m/ 
sec  

3,65 
i,73 
3,84 
5,20 
4,20 
5,56 
6,50 

P~ I P2 

335 399 
t20 t28 
286 33i 
397 474 
t93 207 
252 289 
300 349 

kN: 

222 356 324 
80 t34 121 

t88 298 273 
260 404 372 
123 t99 182 
266 263 243 
i96 308 286 

T~ [ Tz [ T~ [ T4 [ T5 

c. i0--3 

f 
0,354 0,3t0 0,518 0,322[0,348 
0,49210,3t0 0,459 0,265 t 0,298 
0,274[ 0,260 0,427 0,265 0,287 
0.240 10,249 0,417 0,265 0,280 
01197 [ 0,i75 I 0,270 I 0,16i 0,175 
0,165 0,165 [ 0,260 I 0,t61 0,170 

0,i60 0,t61 0,149 0,170 

experiments reported in [4], and the results of our calculations were compared with the 
experimental results. Steel rods of length s and mass m fell with initial speed v 0 onto a 
base of duraluminum DI-T. ~The ends of the rods were curved (with radius of curvature R). The 
basic impact characteristics are shown in Table i. Here Pl, P2, Ps, P4, and P~ are the 
maximum values of the contact force as determined, experimentally in [4], by the Sears model in 
[i], by Kil'chevskii's elastic-plastic model in [3], and by the rigid-plastic and elastic- 
plastic local deformation models, respectively; TI, T2, T3, T4, and T S are the times of 
impact. Comparing results, we see that the Sears theory, based on an elastic model due to 
Hertz, gives a value for Pmax greater, on the average by 20-30%, in comparison with the ex- 
perimental value, and it gives a lower value for T. The theory, based on Kil'chevskii's 
elastic-plastic model [3], yields a value for Pmax lower by 30-40% and a larger value for 
T. The theory proposed here yields results which differ from the experimental results by 
2-6%. In the case of the rigid-plastic model, a particular case of the elastic-plastic 
model, the basic impact parameters are given in the explicit form (12) and results of cal- 
culations differ from experiment by 2-12%. 
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COMPACT REPRESENTATION OF THE FUNDAMENTAL SOLUTION OF THE 

INTERNAL LAMB PROBLEM ON A FREE SURFACE 

A. S. Tyapin and A. I. Startsev UDC 534.16,+550.344.5 

The now-classical expression derived [i] for the Green's function of the problem of 
ground surface displacements induced by an explosion in a homogeneous containment medium is 
written in the form of a three-term sum. One of the terms is the Boussinesq solution for a 
half-space, which assumes that the disturbance propagates instantaneously [2]; another term 
contains typical Rayleigh components, and the third represents certain real integrals. This 
representation of the Green's function is convenient from the standpoint of the physical 
treatment of the propagation of seismic waves in a medium and affords a rapid and efficient 
means of calculating the displacements far from the wave front. However, it is nonoptimal 
for calculating the displacements near the wave front at a large distance from the detonation 
epicenter, where the indicated terms strongly suppress one another in the vicinity of the 
front. 

In the present article we describe an attempt to surmount this difficulty by deriving a 
more compact representation of the Green's function in question without incurring such a 
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